… ist der Titel des 3. Platzes des Roland-Mittermeir-Preises 2017 und wurde vom Förderverein Technische Fakultät mit EUR 500,–ausgezeichnet. Dem Autor und Preisträger, Herrn Dipl.-Ing. Konstantin Posch, wurde der Preis im Rahmen 30-Jahr-Feier Förderverein Technische Fakultät übergeben und die Arbeit wird hier kurz vorgestellt:
Zusammenfassung: Theoretisches Fundament der vorliegenden Arbeit sind neurale Netze, insbesondere Convolutional Neural Networks (CNNs), als spezifische Deep Learning Modelle (DLM) zur Bildklassifikation. Zielsetzung war einerseits die Entwicklung eines innovativen, statistischen Bildklassifikators für Obst und Gemüse und andererseits die Erarbeitung einer neuen Methode zur Verknüpfung von Bayesscher Statistik und Deep Learning, mit dem Ziel, aktuelle Schwachstellen von DLMs entgegenzuwirken und demzufolge deren Anwendungsgebiet und Akzeptanz zu vergrößern. Neben Bearbeitung der beiden Kernthemen wurden vorab jeweils die theoretischen Hintergründe anschaulich beschrieben.
In der Nahrungs- und Genussmittelindustrie ist die zuverlässige Klassifikation von Obst und Gemüse von großem Interesse (automatisierte Sortiersysteme, Qualitätskontrolle, personalisierte Ernährung, automatische Bepreisung,…). Aufgrund der teilweise beträchtlichen Ähnlichkeiten der einzelnen Klassen in Form und Farbe sowie der oft deutlichen Varianz innerhalb der Klassen gilt die Problemstellung als schwierig. Modelle sind häufig nicht präzise genug, oder erfordern Bedingungen an die Datenaufnahme, die in realen Anwendungen unrealistisch, bzw. nur bedingt erfüllbar sind. Im Zuge dieser Arbeit wurde analysiert, ob die Aufnahme von hyperspektralen Bildern (im sichtbaren Spektrum) das Training zuverlässigerer Modelle erlaubt. Beschränkung auf das sichtbare Spektrum erlaubt die Verwendung von vergleichsweise günstigen Kameras, welches weitläufige Akzeptanz in praktischen Anwendungen garantieren soll. Insbesondere wurde eine neue Methode zur Klassifikation von hyperspektralen Bilddaten vorgeschlagen, welche im Wesentlichen auf einer geschickten Erweiterung von CNNs für RGB Daten beruht. Basierend auf einem selbstaufgenommenen und für praktische Anwendungen realistischen Datensatz konnten state-of-the-art Resultate erzielt werden. Darüber hinaus bestätigte eine Konversion der hyperspektralen Bilder in RGB Bilder die Vermutung, dass „Hyperspectral Imaging“ das Training signifikant zuverlässigerer Modelle erlaubt.
Grundsätzlich besitzt Deep Learning zwei Nachteile, welche beide auf der Tatsache beruhen, dass die lernbaren Netzwerkparameter als deterministisch betrachtet werden. Einerseits kann die Prognoseunsicherheit nicht gemessen werden und andererseits leiden die Modelle häufig unter einem over-fitting. Insbesondere die fehlende Information an Prognoseunsicherheit resultiert in bedingter Eignung von Deep Learning in einigen Anwendungsgebieten, in welchen Fehlentscheidungen besonders schwerwiegend sind (selbstfahrende Autos, Medizin,…). Beide Probleme lassen sich mittels Bayesscher Statistik lösen. Hierbei werden die Netzwerkparameter wie Zufallsvariablen behandelt, welches eine Robustheit gegen over-fitting garantiert und weiters eine Quantifizierung der Unsicherheit erlaubt. Sogenanntes Bayes Deep Learning ist Gegenstand aktueller Forschung und stößt weltweit auf enormes Interesse. In dieser Arbeit wird erstmals eine Methode für Bayes Deep Learning präsentiert, welche sowohl eine akkurate Quantifizierung der Prognoseunsicherheiten, als auch der Parameterunsicherheiten erlaubt. Wie in der Arbeit gezeigt wurde, kann letzteres zur Optimierung von Netzwerkarchitekturen genutzt werden. Die vorgeschlagene Methode wurde durch Modifikation des populären Deep Learning Frameworks Caffe implementiert und erfolgreich am Benchmark-Datensatz MNIST getestet.
Die vorliegende Diplomarbeit diente als Ausgangspunkt von zwei Publikationen, welche sich derzeit in Elsevier Engineering Applications of Artificial Intelligence und Springer International Journal of Computer Vision im Reviewprozess befinden. Abschließend ist noch anzumerken, dass die Arbeit im Rahmen eines Projektes mit der Carinthian Tech Research AG, Villach entstand und darüber hinaus von der Philips Austria GmbH unterstützt wurde.